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Bilayer graphene nanoribbons with zigzag termination are studied within the tight-binding model. We also
include single-site electron-electron interactions via the Hubbard model within the unrestricted Hartree-Fock
approach. We show that either the interactions between the outermost edge atoms or the presence of a magnetic
order can cause a splitting of the zero-energy edge states. Two kinds of edge alignments are considered. For
one kind of edge alignment ��� the system is nonmagnetic unless the Hubbard parameter U becomes greater
than a critical value Uc. For the other kind of edge alignment ��� the system is magnetic for any U�0. Our
results agree very well with ab initio density functional theory calculations.
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I. INTRODUCTION

Great efforts have been made in the last decade aiming at
employing new materials as electronic devices.1–3 This need
is due to several factors, among which we mention the limi-
tations of silicon-based devices4,5 and the challenge of
spintronics.6,7 In this scenario, the graphene8 emerges as a
most promising material, because of its unique properties.
Measurements of massless fermions with high mobility9,10

and Quantum Hall effect11,12 are examples of the special
characteristics of this material.

The graphene in its pristine configuration is a gapless ma-
terial. Thus, having in mind possible device applications, it is
interesting to be able to open and control a gap. One possi-
bility is cutting the graphene in order to create a lateral quan-
tum confinement, synthesizing the so-called “graphene nan-
oribbons” �GNRs�.13,14 This quasi-one-dimensional material
possesses a gap that varies with the width, and sub-10 nm
widths are required for a large enough gap to enable room-
temperature applications. Depending on the cutting direction,
GNRs can be formed with two different edge shapes, namely
zigzag or armchair. The electronic structure and the magnetic
properties of this material strongly depend on the shape of
the edge termination. Theoretical works predict that when
the graphene is cut forming GNRs with a zigzag termination,
a large density-of-states �DOS� peak occurs at the Fermi
level. This is mainly composed by half-filled states, which is
unstable, leading to the appearance of a magnetized state
�ferromagnetic or antiferromagnetic� with lower energy. The
decrease of the total energy occurs because the half-filled
DOS peak is broken down into two peaks: one with energy
lower than the Fermi level, composed by full-filled states,
and another with energy higher than Fermi level, composed
by unoccupied states. In other words, the nonmagnetic GNRs
with zigzag termination have an electronic instability that
can be resolved with the appearance of a magnetic order, that
splits the half-filled edge states, and that eliminates the large
DOS peak at the Fermi energy. The presence of strongly
localized states near the edges, which are investigated both
theoretically15 and experimentally,16,17 is fundamental to ex-
plain the appearance of this magnetism, in the sense that it is

the localization of the wave function that allows a local mag-
netic moment. So, the electronic stability of GNRs with zig-
zag termination can be linked to the splitting of the edge
states caused by the presence of an edge magnetism.

Recently it was observed that by stacking two layers of
graphene, forming a “bilayer graphene,” a new mechanism
of control of the gap is possible.18–20 In fact, the charge
transfer between the layers will affect the band structure and
is a suitable mechanism to control the electronic structure of
graphene derived materials. Another advantage of bilayer
graphene is the low 1 / f noise,21 when compared to a single
layer. This occurs because two stacked layers are less sensi-
tive to external perturbations than an isolated one, and there-
fore will be more suitable for device applications.

Combining the lateral quantum confinement with the
stacking of two layers, bilayer graphene nanoribbons
�BGNRs� can be constructed, a system that possesses suffi-
cient ingredients to make graphene-based nanoelectronic de-
vices. The fabrication of a transistor using BGNR with
widths of the order of 2 nm �Ref. 22� has been recently
reported. The edge termination of the BGNRs �as well as
GNRs� is strongly relevant for the electronic structure of this
material.23–25 Theoretical investigations, within the tight-
binding approach, predict that the BGNRs with a zigzag ter-
mination �B-ZGNRs� also possesses half-filled strong local-
ized edge states with zero energy26 and, as a result, a large
DOS peak at the Fermi level also occurs. Thus, a magnetic
ordering can emerge to stabilize the system. However, the
B-ZGNRs possess two kinds of edge alignments, illustrated
in Fig. 1. In �a� the � alignment is presented, and in �b� the �
alignment is presented. First-principles simulations predict
that the � alignment is energetically favorable and have a
zero magnetic moment, whereas the � alignment have a non-
zero magnetic moment.24 At the � alignment there is a situ-
ation that differs qualitatively from the � alignment and the
GNRs, because the stability is not associated with an edge
magnetism. We show in this paper that the mechanism that
mainly stabilizes the B-ZGNRs at the � alignment is the
interaction between the outermost carbon atoms of the two
layers, whereas the stability at the � alignment is associated
solely to an edge magnetism.
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We present in this paper a detailed discussion of the mag-
netism and electronic structure of B-ZGNR using a tight-
binding approach.27–29 The absence of a magnetic order in
B-ZGNRs with an � alignment24 is completely explained by
the inclusion of a weak interaction between the edge atoms
of the two layers with a hopping tedge �see Fig. 2�c�� that
splits the half-filled states, and stabilizes the system. Consid-
ering the single-site electron repulsion via a Hubbard model,
within the unrestricted Hartree-Fock approximation,30 we
found that B-ZGNRs at the � alignment will be nonmagnetic
unless U�Uc and B-ZGNRs at the � alignment will be mag-
netic for any value of U. This behavior depends solely on the
splitting of the edge states, which are the four energy bands
around the Fermi level for 2� /3� �k���. We show this with
analytical arguments, by calculating the zero-energy wave
functions of the edge states for both � and � alignments at
the regime U=0 and tedge=0, and we use first-order pertur-
bation theory to calculate the local magnetization and the
energy bands of the edge states when tedge�0 and U�0. We
corroborate these results with a numerical solution of this
Hamiltonian, and compare with state-of-the-art ab initio
simulations.24

II. METHODOLOGY

The Hamiltonian we use to describe the B-ZGNR is given
by

H = H1 + H2 + H1,2 + HU + Hedge. �1�

The Hi with i=1 or 2 are the single layer Hamiltonians writ-
ten as

Hi = − t�
�

�
m,n

ai,�
† �m,n��bi,��m,n� + bi,��m − 1,n� + bi,��m,n

− 1�� + H.c., �2�

where, t is the in-layer first neighbor hopping �see Fig. 2�a��,
ai,��m ,n� and bi,��m ,n� �ai,�

† �m ,n� and bi,�
† �m ,n�� annihilates

�creates� a � electron with spin � at the site �m ,n� at the
sublattice A or B, respectively. The m index of the sites is
related to the periodic direction along the nanoribbons
growth direction, and may assume any integer value in the
interval �−� ,��. On the other hand, the n index is associated
with the lateral direction, and a lateral quantum confinement
can be employed limiting n to the interval �0,N−1�. Since
graphene possesses two atoms in the unit cell, this represents
a nanoribbon containing 2N C atoms from one edge to the
other.

The term H1,2 contains the bulk interactions between the
two layers. We consider that only the atoms of one layer that
are positioned exactly above an atom of the other layer in-
teract with a hopping t� �see Fig. 2�b��. The layers are
stacked at the Bernal pattern, what means that the
A-sublattice of one layer interacts with the B sublattice of the
other layer. However, the kind of edge alignment must be
considered. At the � alignment, all sites of the A sublattice of
one layer interact with some site of the B sublattice of the
other layer. In this case, the bulk interaction term can be
written as

H1,2
� = − t� �

�,m,n
a1,�

† �m,n�b2,��m,n� + H.c. �3�

At the � alignment, the outermost sites of the sublattices A
and B do not have any C atom of the other layer exactly
above �or below� them. The interaction term can be written
as

H1,2
� = − t��

�,m
�
n=1

N−1

a1,�
† �m,n�b2,��m,n − 1� + H.c. �4�

In order to describe the magnetic properties, we include
the single-site electron repulsion energy via Hubbard model,
given by

EU = U �
i,m,n

�
c=a,b

�ni,↑
c �m,n� −

1

2
��ni,↓

c �m,n� −
1

2
� , �5�

where U is the Hubbard parameter, and ni,↑
c �m ,n�

=ci,�
† �m ,n�ci,��m ,n� is the number operator with c=a or b.

The factors −1 /2 inside the brackets are included uniquely to
conveniently define the energy zero. Within the Unrestricted
Hartree-Fock approach, the single-site electron repulsion
contribution to the Hamiltonian is

HU = U �
i,�,m,n

	�
ni,−�
a �m,n�� −

1

2
�ai,�

† �m,n�ai,��m,n�

+ �
ni,−�
b �m,n�� −

1

2
�bi,�

† �m,n�bi,��m,n�� , �6�

where, 
ni,�
a �m ,n���
ni,�

b �m ,n��� is the density of electrons

FIG. 1. �Color online� We consider two edge alignments for the
bilayer graphene �a� � alignment, where the outermost C edge at-
oms possess only one C nearest neighbor at the other layer. �b� �
alignment, where the outermost C edge atoms possesses three C
nearest neighbors at the other layer. The dark and gray �blue� layers
are the upper and bottom ones.

FIG. 2. An illustration of the hopping interactions considered in
the present work. In �a� we show the in-layer first neighbor hopping
t. In �b� we show the interlayer bulk interactions t�. In �c� we show
the interlayer edge interactions tedge. The last one is considered only
between the edge atoms localized at the B-ZGNR border. In �c�, the
edge atoms are saturated with hydrogen to indicate the bilayer
border.
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with spin �, at the site �m ,n� at the A sublattice �B sublat-
tice� of layer i.

If solely the terms Hi, H1,2, and HU are considered, the
conclusion is that the magnetism is the only way to split the
zero-energy states.26 As already mentioned, these conclu-
sions do not agree with the ab initio simulations, which pre-
dict that for the � alignment the splitting of the edge states
can occur even without the presence of a magnetic order.
This paper will show that the interaction between the edge
atoms, associated with the kind of edge alignment, have a
strong relevance to the presence or absence of magnetic mo-
ment, and to the splitting of the half-filled zero-energy edge
states, contributing to the electronic stabilization of the sys-
tem. In order to consider these edge interactions, we explic-
itly include the term Hedge that contains only the interaction
between the outermost C atoms of one layer with the outer-
most C atoms of the other layer with a small hopping tedge
�see Fig. 2�c��. The edge alignment must also be considered,
and for the � alignment, we have

Hedge
� = − tedge�

�,m
�a1,�

† �m,0�a2,��m,0� + b1,�
† �m,N

− 1�b2,��m,N − 1�� + H.c., �7�

whereas, for the � alignment, we have:

Hedge
� = − tedge�

�,m
�a1,�

† �m,0��a2,��m,0� + a2,��m + 1,0��

+ b1,�
† �m,N − 1��b2,��m,N − 1� + b2,��m + 1,N − 1���

+ H.c. �8�

In our calculations, we guarantee the periodicity by mak-
ing use of the Bloch theorem. Therefore, we use the follow-
ing unitary transformations:

ai,��k,n� =
1

N
�
m

eikmai,��m,n� , �9�

bi,��k,n� =
1

N
�
m

eikmbi,��m,n� , �10�

where k� �−� ,�� is the crystal moment. Thus, inverting the
above expression and substituting the operators ai,��m ,n�
and bi,��m ,n� in each term of Eq. �1�, the Hamiltonian can be
written as a sum of k-dependent terms �H=�kH�k��.

The k-dependent Hamiltonian for a single layer is

Hi�k� = − t�
i,�

�
n

ai,�
† �k,n��bi,��k,n��1 + eik� + bi,��k,n − 1��

+ H.c. �11�

For the interlayer interaction, we find for the � alignment

H1,2
� �k� = − t��

�,n
a1,�

† �k,n�b2,��k,n� + H.c. �12�

and for the � alignment

H1,2
� �k� = − t��

�
�
n=1

N−1

a1,�
† �k,n�b2,��k,n − 1� + H.c. �13�

The k-dependent electron repulsion mean-field term is

HU�k� = U �
i,�,n

	�
ni,−�
a �n�� −

1

2
�ai,�

† �k,n�ai,��k,n�

+ �
ni,−�
b �n�� −

1

2
�bi,�

† �k,n�bi,��k,n�� , �14�

where the charge density is given by


ni,�
a �n�� =

1

2�
�

−�

�

dk
ai,�
† �k,n�ai,��k,n�� , �15�


ni,�
b �n�� =

1

2�
�

−�

�

dk
bi,�
† �k,n�bi,��k,n�� . �16�

Finally, the k-dependent edge interactions for the � align-
ment are

Hedge
� �k� = − tedge�

�

�a1,�
† �k,0�a2,��k,0� + b1,�

† �k,N

− 1�b2,��k,N − 1�� + H.c. �17�

and for the � alignment

Hedge
� �k� = − tedge�

�

��1 + e−ik�a1,�
† �k,0�a2,��k,0� + �1

+ e−ik�b1,�
† �k,N − 1�b2,��k,N − 1�� + H.c. �18�

When the single-site electron repulsion HU is considered,
the numerical calculations are performed with a self-
consistent-field �SCF� convergence. Employing different ini-
tial densities at the beginning of the SCF cycle it is possible
to obtain different converged densities. We find that the con-
verged densities possesses a local magnetic moment only
near the edge sites; i.e., the density of the ↑ electrons greatly
differs from the densities of the ↓ electrons only near the
outermost sites.

III. RESULTS

A. Analytical analysis

In this section, we will discuss the edge states for the �
and the � alignments. It will be presented the expressions for
the wave functions for the special regime where U= tedge=0
for both � and � alignments. For this regime, the edge states
are half-filled zero-energy states, and can be calculated ana-
lytically. After this, it will be calculated the splitting of these
zero-energy levels in the regime U�0 and tedge�0 through
first-order perturbation theory. It will be shown how the en-
ergy bands for the edge states depend on the edge alignment
�� or �� when U�0 and tedge�0.

The general form of the eigenstates for U=0 is given by
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�	,k� = �
n

�
i=1

2

�
i�k,n��a,i,k,n� + �i�k,n��b,i,k,n�� , �19�

where �c , i ,k ,n�=ci
†�k ,n��0� for c=a or b, are the single-

electron basis vectors we use. The spin index � can be sup-
pressed. 
i�k ,n� and �i�k ,n� are the coefficients that multiply
each basis vector �c , i ,k ,n�. In order to find the wave func-
tions for the edge states, the methodology presented in Ref.
26 is followed. The Hamiltonian of Eq. �1� is applied to the
eigenstates of Eq. �19� and is equaled to zero. For the
B-ZGNRs at the � alignment with tedge=U=0, we found the
following relations:

	
1�k,n + 1�

2�k,n + 1� � = e−ik/2Dk� 1 0

−
t�

t
1 �	
1�k,n�


2�k,n� � , �20�

with Dk=−2 cos� k
2 �. Observing that

� 1 0

−
t�

t
1 �

n

= � 1 0

− n
t�

t
1 � , �21�

it is easy to show that

	
1�k,n�

2�k,n� � = e−ik/2nDk

n� 1 0

− n
t�

t
1 �	
1�k,0�


2�k,0� � . �22�

The above relation involves a 2�2 matrix, which means
that two degenerated wave functions with zero energy can be
found with this relation. For any two linearly independent
choices of 
1�k ,0� and 
2�k ,0�, two degenerated wave func-
tions can be calculated. Therefore, we found one wave func-
tion choosing 
1�k ,0�=1 and 
2�k ,0�=0, leading to a eigen-
state with the coefficients given by


1
1�k,n� = C1

��k�e−ik/2nDk
n,


2
1�k,n� = − C1

��k�e−ik/2nDk
nn

t�

t
. �23�

We found another eigenstate choosing 
1�k ,0�=0 and

2�k ,0�=1, leading to a wave function with the coefficients
given by


1
2�k,n� = 0,


2
2�k,n� = C2

��k�e−ik/2nDk
n. �24�

Note that two coefficients �
1
1,2�k ,n� and 
2

1,2�k ,n�� are nec-
essary to define a state with a crystal moment k, and their
subscripts are related to the layer label �1 or 2�. C1

��k� and
C2

��k� are the normalization constants for each k, and the
superscript � is related to the kind of edge alignment. Con-
sidering a semi-infinite bilayer graphene, these normalization
constants are different from zero only when �Dk��1. This
means that the edge states possess zero energy only when
−��k�− 2�

3 and 2�
3 �k��. The state given by Eq. �23� is

not orthogonal to the state of Eq. �24�. Orthogonalizing Eq.
�23� with respect to Eq. �24� we obtain


1
1�k,n� = C1

��k�e−ik/2nDk
n


2
1�k,n� = − C1

��k�e−ik/2nDk
n t�

t
�n −

Dk
2

1 − Dk
2� . �25�

The normalization factor for Eq. �25� is �C1
��k��2= �1

−Dk
2�3 / ��t� / t�2Dk

2+ �1−Dk
2�2� and for Eq. �24� is �C2

��k��= �1
−Dk

2�. These wave functions survive only near the site n=0,
therefore we can say that these wave functions are localized
near the edges indexed by n=0.

Applying the Hamiltonian of Eq. �1� to the eigenstate of
Eq. �19� we also found an expression for the �i�k ,n� that is
analogous to Eq. �22�. This relation will give two more de-
generated wave functions, but with the particular feature that
those are localized at the other side of the B-ZGNR when
compared to the wave functions of Eqs. �24� and �25�. Re-
placing 
i�k ,n� by �i�k ,n� and n by N−n−1 and taking the
complex conjugate of Eqs. �24� and �25�, we obtain these
other edge states. Thus, there are four zero-energy edge
states, associated with the four edges of the B-ZGNR. We
also point out that the coefficients 
i�k ,n� do not depends on
the coefficient �i�k ,n�, and vice versa.

Up to this point, we have calculated the edge states for the
B-ZGNRs at the � alignment using the methodology of Ref.
26, where those for the � alignment were calculated, and are
given by


1
1�k,n� = C1

��k�e−ik/2nDk
n


2
1�k,n� = − C1

��k�e−ik/2�n−1�Dk
n−1 t�

t
�n −

Dk
2

1 − Dk
2� , �26�

and


1
2�k,n� = 0,


2
2�k,n� = C2

��k�e−ik/2nDk
nt , �27�

with �C1
��k��2= �1−Dk

2�3 / ��t� / t�2+ �1−Dk
2�2� and �C2

��k��= �1
−Dk

2�.
The two differences between the wave functions for the �

and � alignments are only a factor of eik/2 /Dk for 
2
1�k ,n�

and the normalization constant C1�k�. In particular, when k
=� �K symmetry point�, the � alignment presents two wave
functions strictly localized at the outermost edge atoms,
whereas the � alignment presents one wave function strictly
localized and another with nonzero coefficient for n=0 in
one layer, and n=1 in the other layer.

In order to see the difference between these two align-
ments when a local magnetization is present, let us consider
the electron repulsion in the form of Eq. �14�. However, we
will impose that only the edge atoms indexed by n=0 be-
longing to the A sublattice have a small magnetic polariza-
tion, i.e., 
ni,↑

a �n=0��= 1
2 +, 
ni,↓

a �n=0��= 1
2 −, and, the den-

sity at all other sites “n”, for each spin channel, is 1
2 . This

will be a suitable approach, since a numerical solution with
the inclusion of the single-site electron repulsion combined
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with a SCF convergence leads to a state where the local
magnetization at the edge atoms are much more pronounced
than at the other atoms.31,32 This happens because the pres-
ence of the edges introduces surface �edge� states that are
highly localized and with an energy band with very small
dispersion around the Fermi level. In other words, as op-
posed to the bulk where a large band dispersion prevents that
the value of U leads to the development of local magnetic
moments,33 at the edges the ratio U / t is such that there oc-
curs the appearance of such moments.

With this approach, Eq. �14� reduces to

HU�k� = U�
i,�

�− sgn���ai,�
† �k,0�ai,��k,0�� + H.c., �28�

with sgn�↑ �=+1 and sgn�↓ �=−1.
The inclusion of HU�k� causes a splitting �U�k� of the

zero-energy states, that can be calculated through first-order
perturbation theory, with the expression �U= 
	�HU�	�.

For the � alignment, the zero-energy states defined by Eq.
�25� split as

�U
1,��k� = − sgn���U�C1

��k��2	1 +
t�
2

t2

Dk
4

�1 − Dk
2�2� , �29�

and, for the � alignment, the equivalent states, defined by
Eq. �26� split as

�U
1,��k� = − sgn���U�C1

��k��2	1 +
t�
2

t2

Dk
2

�1 − Dk
2�2� . �30�

For both � and � alignments, the splitting of the other
edge states, defined in Eqs. �24� and �27�, respectively, is
exactly the same, and given by

�U
2,�;��k� = − sgn���U�C2�k��2, �31�

with �C2
��k��2= �C2

��k��2��C2�k��2.
The resultant splitting due to an antiferromagnetic order-

ing between the edges can also be calculated replacing  by
�−1�i in expression �28�, where i is the layer index. In Fig.
3 we present the splitting of the zero-energy levels for the �
and � alignments, for both the ferromagnetic �F� as well as
the antiferromagnetic �AF� ordering. Figure 3�a� presents the
�U

1 �k� for the F ordering and �b� presents the �U
1 �k� for the

AF. Finally, �c� and �d� present the �U
2 �k� for the F and AF,

respectively. �U
1,��k� and �U

1,��k� have only very small differ-
ences. Moreover, �U

2,��k� coincide for both edge alignments,
which is a consequence of the equality of their wave func-
tions. Therefore, the behavior of the �-B-ZGNR and
�-B-ZGNR is very similar if only a magnetic perturbation is
considered.

At the first Brillouin-zone border �k=��, the magnitude of
the magnetic splitting can be calculated with expressions
�29�–�31�. This splitting is exactly U for the wave functions
presented in Eqs. �24�, �25�, and �27�. Moreover, for the
wave functions presented in Eq. �26�, the splitting at k=� is
smaller, and depends on t / t�.

From the expressions presented in Eqs. �29�–�31�, it can
also be inferred that the ↑ states suffer a positive splitting,
whereas the ↓ states suffer a negative splitting �or vice versa,
depending on the signal of the local magnetic moment at the

edge atoms�. This fact imposes a peculiar electron-hole sym-
metry, where the occupied states with spin � are symmetric
with respect to the unoccupied states with spin −�, and vice
versa. This can be observed in Fig. 3.

Now, we focus at the edge atoms interactions in the re-
gime U=0 and tedge�0. For the � alignment, the term in the
Hamiltonian that includes the interlayer edge atoms interac-
tions �Eq. �18�� reduces to zero at the K symmetry point.
This means that inclusion of such interaction does not split
the edge states at the first Brillouin-zone border, where the
edge wave functions are strictly localized. First-principles
calculations reveal that a repulsive interaction between the
edges occurs for this kind of alignment.24 Therefore, for a
realistic situation the distance between the edge atoms con-
siderably increases and the tedge can be neglected. Because of
these arguments, we will not consider in this work the inter-
action between edge atoms for the � alignment.

However, for the � alignment there is a completely dif-
ferent scenario. The edge interactions are responsible for the
splitting of the edge states, including the K symmetry point.
First-principles calculations predict the existence of a chemi-
cal bond between the edge atoms of the two layers, which
causes an edge attraction for this alignment.24 Because the
value of tedge have a close relationship with the distance be-
tween the edge atoms, the edge interaction term Hedge must
be considered for this alignment. To better understand the
effect of the edge interactions for the � alignment, it is in-
teresting initially to investigate the regime tedge�0 and U
=0.

As already done for the Hubbard term, the splitting of the
zero-energy edge states due to the inclusion of the edge in-
teractions can be calculated using First Order Perturbation
Theory. To do this, it is important to observe that the edge

2π/3 π
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FIG. 3. �Color online� The splitting �U
1 �k� for both � and �

alignments is presented. In �a� the ferromagnetic case is presented,
and in �b� the antiferromagnetic case is presented. The splitting
�U

2 �k� is also presented. In �c� the ferromagnetic order is presented,
and in �d� the antiferromagnetic order is presented. We use U= t,
=0.2, and t�=0.2t.
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interaction operator annihilates an electron at the site n=0 of
one layer, and creates an electron at the same site of the other
layer. Because of this fact, it is convenient to use the ligand
�
+=1 /2��
1+
2��� and the antiligand �
−=1 /2��
1−
2���
states constructed from the eigenstates of Eqs. �24� and �25�.
The two indexes that define the ligand state for a given k are


1
+�k,n� =

1
2

�C1
��k�e−ik/2nDk

n�


2
+�k,n� =

e−ik/2nDk
n

2
	C2�k� − C1

��k�
t�

t
�n −

Dk
2

1 − Dk
2�� .

�32�

The splitting caused by the edge interactions for the above
state ��e

+= 

+�Hedge�
+�� is given by

�e
+�k� = − tedgeC1

��k�	C2�k� + C1
��k�� t�

t
� Dk

2

1 − Dk
2� .

�33�

The antiligand state for a given k is


1
−�k,n� =

1
2

�C1
��k�e−ik/2nDk

n� ,


2
−�k,n� =

e−ikn/2Dk
n

2
	C2�k� + C1

��k�
t�

t
�n −

Dk
2

1 − Dk
2�� ,

�34�

and this state splits as

�e
−�k� = tedgeC1

��k�	C2�k� − C1
��k�� t�

t
� Dk

2

1 − Dk
2� . �35�

In Fig. 4, we show the graphs for the splittings given by
Eqs. �33� and �35�. The first thing to note is that the electron-
hole symmetry is broken. The necessary condition to have an
electron-hole symmetry is that the density generated from
the occupied states is equal to those generated from the un-
occupied states. This occurs when tedge=0 because the ligand

and the antiligand states, which have different densities, are
half-filled and degenerated. But, when tedge�0, the splitting
leads to a situation where the ligand state is occupied and the
antiligand state is unoccupied, and therefore, the electron-
hole symmetry is broken.

From Eqs. �33� and �35�, we can see that the gap at the
first Brillouin border �k=�� is exactly 2tedge for the � align-
ment.

When the zero-energy levels are splitted due to the edge
interactions, they are still degenerated with respect to the
spin degrees of freedown. This degeneracy can be broken if
the system becomes magnetized, which can still occur due to
a magnetic splitting caused by the Hubbard term. Note that
as opposed to the � alignment where such an edge interac-
tion �tedge� is not present and thus any finite value of U leads
to a local magnetization, in the � alignment this nonzero
value of tedge, and the consequent appearance of a small band
dispersion, now requires a critical value of U for the system
to become magnetic, as will be shown below. Considering
the ligand and antiligand wave functions, the Hubbard con-
tribution from Eq. �28� causes a magnetic splitting given by

�U
+ �k� = U��
1

+�k,0��2 + �
2
+�k,0��2� ,

�U
− �k� = U��
1

−�k,0��2 + �
2
−�k,0��2� , �36�

where, �U
+,−�k�= 

+,−�HU�
+,−�. The above expressions con-

sider a ferromagnetic configuration. The occurrence of both
splittings �e�k� and �U�k� simultaneously can result in two
distinct situations, shown schematically in Fig. 5.

Situation �i�, where the magnetic splitting �U
+ �k� is small,

is shown in Fig. 5�a�. In this case, the bands for both spin
channels associated with the ligand states remain occupied,
and the bands for both spin channels associated with the
antiligand states remain unoccupied.

In situation �ii� the magnetic splitting is large enough to
invert the relative position of the ligand and antiligand bands
for one of the spin channels. This situation is shown in Fig.
5�b�, and results in a configuration where one ligand band
and one antiligand band are occupied for one spin channel,
and unoccupied for the other.

2π/3 π
k

-0.2

-0.1

0

0.1

0.2

∆ e/t
α+

α-

FIG. 4. �Color online� The splitting �e�k� caused by the edge
interactions on the edge states of an � B-ZGNR is presented. We
used t�=0.2t and tedge=0.2.

FIG. 5. Schematic scheme of the two situations that can occur if
the edge interactions and the magnetism are considered simulta-
neously. The situation showed in �a� is nonmagnetic. The situation
showed in �b� possesses a finite magnetic moment at the edge
atoms.
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To understand when either situation �i� or situation �ii�
occurs, let us take the Hartree-Fock total energy, considering
that the only bands that vary with  are those related to the
edge states. For situation �i�, we have

E�� =
1

�
�

2�/3

�

dk��e
+�k� + �U

+ �k�� +
1

�
�

2�/3

�

dk��e
+�k�

− �U
+ �k�� + U2 + C . �37�

Here, the constant C includes the integral over the nonedge
occupied states and the integral over the occupied edge
bands from k=0 to k=2� /3. Since the term �U

+ vanishes in
Eq. �37�, and the term �e

+ does not depend on , the integrals
in Eq. �37� do not depend on the , and the energy minimi-
zation condition dE�� /d=0 leads to =0. This means that
the minimum-energy configuration in situation �i� is non-
magnetic.

For situation �ii�, the Hartree-Fock total energy is given
by

E�� =
1

�
�

2�/3

�

dk��e
+�k� − �U

+ �k�� +
1

�
�

2�/3

�

dk��e
−�k�

− �U
− �k�� + U2 + C . �38�

and, using Eq. �36� it can be shown that the minimization of
the total energy leads to

 =
1

2�
�

2�/3

�

��
1
+�k,0��2 + �
2

+�k,0��2 + �
1
−�k,0��2 + �
2

−�k,0��2� .

�39�

The numerical evaluation of the above expression for t�

=0.2t gives �0.2. This means that the minimum-energy
configuration has a finite local magnetic moment at the edge
atoms in situation �ii�.

The nonmagnetic configuration �i� occurs until U be-
comes large enough to turn the configuration �ii� energeti-
cally favorable. As a consequence, the system becomes mag-
netic. Therefore, our analytical model predicts a critical
value U=Uc, above which the system becomes magnetic.
The condition for situation �ii� to be energetically favorable
can be calculated by subtracting Eq. �37� with =0 from Eq.
�38� with �0 and imposing that this energy difference is
negative. This condition leads to the following expression:

1

�
�

2�/3

�

dk��e
−�k� − �e

+�k� − �U
− �k� − �U

+ �k�� + U2 � 0.

�40�

Using Eqs. �36� and �39�, the Uc is calculated as

Uc =
1

2�
�

2�/3

�

dk��e
−�k� − �e

+�k�� . �41�

In particular, for t�=0.2t, and considering Eqs. �33� and
�35�, the critical value Uc can be calculated by a numerical
integration, and is given by

Uc = 10tedge. �42�

Because we use first-order perturbation theory, the ap-
proximations we made are suitable only for small values of
U. In this regime, we found a constant value for  as well as
a linear dependence between tedge and Uc. For large values of
U we expect that the nonedge atoms will also be magnetized
and the local magnetization will depend on U.

B. Numerical analysis

The analytical analysis presented in the previous section
is very useful to understand the main physical characteristics
of B-ZGNRs. However, a numerical analysis can be impor-
tant to take into account other features of the system, such as
magnetization of nonedge atoms and properties calculated
beyond the first-order perturbation theory. In this section, we
will present results obtained from the numerical diagonaliza-
tion of the Hamiltonian within the Unrestricted Hartree-Fock
approximation, showing how the increase of U affects the
system.

In Fig. 6 the energy bands for the � alignment in the
regime that U=0 and tedge=0 are presented. Because in this
regime the edge states have an energy eigenvalue equal to
zero, the energy bands will not depend on the alignment.
But, as we have shown, the wave functions differ between
the � and � alignments, and when U�0 and/or tedge�0,
many properties will depend on the kind of alignment.

In Fig. 7 the bands for a more realistic situation are pre-
sented. Considering U= t and t�=0.2t, we show in: �a� the
bands for the � alignment with tedge=0.2t; �b� the inset for
the same bands, where, the solid �blue� lines come from the
numerical calculations, and the dashed �red� lines come from
the analytical expression �Eqs. �33� and �35��; �c� the bands
for the � alignment with tedge=0; A magnified view of the
bands in �c� around the energy zero is presented in �d�. The
solid �blue� lines come from the numerical calculations, and
the dashed �red� lines come from the analytical expressions
�Eqs. �30� and �31��.

The Figs. 7�b� and 7�d� show that the numerical and the
analytical solutions agree very well even for U� t. The small
differences appear mainly because the numerical solution

FIG. 6. Energy bands in the regime U=0 and tedge=0 for N
=100. There are no differences between the � and the � alignments.
At the inset we show in detail the region around the energy zero,
limiting the energy axes from −0.1t to 0.1t, and k /2=0.29� to 0.5�.
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was laterally confined �N=50�, and because the Hubbard
term was simplified in the analytical analysis.

For the beta alignment, the system is always magnetic for
U�0. For the particular case shown in Fig. 7�c�, the edge
atoms have a local magnetic moment of 0.3 �B. On the other
hand, for the � alignment, a nonmagnetic ground state can be
found despite the presence of the Hubbard term �U�0�, as
shown in Figs. 7�a� and 7�b�. In fact, the presence of the edge
magnetization depends on the strength of tedge, and the sys-
tem becomes magnetic only if U�Uc. In Fig. 8 we show the
calculated values of Uc, obtained from the numerical diago-
nalization of the Hamiltonian, which is compared to the ana-
lytical expression calculated in the previous section �Eq.
�42��. The linear dependence between Uc and tedge is a good
approximation only for small values of tedge, as was expected
because it was obtained via first-order perturbation theory.

In order to validate our results in the sense of a more
realistic analysis, we compare the bands with the methodol-
ogy of the present work with the bands calculated with an ab
initio method based on density functional theory �DFT�. Be-
cause the interaction between the two layers have a strong
contribution from the van der Waals �vdW� interaction, and
because the majority of exchange-correlation functionals in
use today do not correctly describe the vdW dispersion, we
compare our results with those of Ref. 24, which uses a van
der Waals dispersion corrected method. The results are pre-
sented in Fig. 9 for N=8. In �a�, we present the bands calcu-
lated numerically with the tight-binding method, as obtained
in this work, and in �b� we present a DFT calculation, in both
cases for the � alignment. The bands in �a� and �b� show that

the fundamental behavior is equally described by both meth-
odologies. In both �a� and �b�, we found a nonmagnetic state
with a finite gap. The energy bands are very similar, and the
small differences are related to the edge distortions that oc-
cur in the DFT calculation.

In Figs. 9�c� and 9�d�, we present the simulations for the
� alignment using the methodology of the present work and
DFT, respectively. Both calculations agree very well, and
predict a magnetic state with a local magnetization at the
edge atoms of 0.3 �B.

With a mechanism that changes the value of U / t or tedge it
is possible to magnetize or demagnetize the �-B-ZGNRs. In
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FIG. 7. �Color online� Energy bands for the most realistic situ-
ation. In �a� the bands for the � alignment calculated numerically is
presented. We used U= t, t�=0.2t and tedge=0.2t. In �b� the inset of
�a� is presented, where the solid �blue� lines come from the numeri-
cal solution, whereas the dashed �red� lines come from the analyti-
cal expressions of Eqs. �33� and �35�. In �c� the bands for the �
alignment calculated numerically with U= t, t�=0.2t, and tedge=0
are presented. Here, an antiferromagnetic order is imposed. In �d� is
presented the inset of �c�, where the solid �blue� lines come from
the numerical solution, and the dashed �red� lines come from the
analytical expressions of Eq. �30� and �31�.
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FIG. 8. �Color online� Dependence of Uc with tedge. We used
t�=0.2t. The solid �black� line was calculated from the numerical
solution, and the dashed �red� line is the analytical expression of
Eq. �42�, which is a good approximation when tedge is small. If U
�Uc, the system becomes magnetized, while U�Uc leads to a
demagnetized solution.
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FIG. 9. �Color online� Bands calculated with the methodology
of this work compared with first-principles calculations with DFT.
The parameters we use are N=8, U=1.3t, t�=0.13t, tedge=0.2t, and
t=2.6 eV. The DFT calculations are performed with the methodol-
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Waals correction. �a� present work, � alignment. �b� DFT, � align-
ment. �c� Present work, � alignment. �d� DFT, � alignment.
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particular, the application of a strain will reduce the hopping
t and increase the ratio U / t, favoring the magnetic state. On
the other hand, the strength of tedge can be controlled by
changing the distance between the edge atoms of the two
layers. In particular, applying a pressure near the edges will
increase the strength of tedge, favoring the nonmagnetic state.

IV. CONCLUSION

We have investigated the electronic structure and the edge
magnetism of Graphene bilayer ribbons using a tight-binding
approach. The Hamiltonian we use is composed by a first
neighbor hopping along each single layer, interlayer interac-
tion terms, a single-site electron repulsive term via the Hub-
bard model and an edge interaction term. Two edge align-
ments are considered: one labeled �, where the outermost
atoms of one layer possess one nearest neighbor at the other
layer, and another labeled �, where the outermost atoms of
one layer possess three nearest neighbors at the other layer.

Through an analytical analysis, we show the differences
between these two edge alignments. There are only small
differences for the wave function, but the behavior differs
qualitatively because of the Hamiltonian symmetry. For the
� alignment, the edge atoms interactions are not relevant,

and the system becomes magnetic for any U�0. For the �
alignment, the presence of edge interactions is fundamental
to describe a realistic situation. We predict a critical value
U=Uc, above which the system becomes magnetic. This oc-
curs because there is a competition between a nonmagnetic
and a magnetic configuration, and the latter one is energeti-
cally favorable only for U�Uc. The analytical analysis we
made is valid only for small values of U. Therefore, we also
present numerical calculations which better describe the re-
gime of larger values of U within the Unrestricted Hartree-
Fock approximation. The validation of our results are made
by comparing the results obtained with the methodology pre-
sented in this paper with ab initio calculations. The overall
agreement is very good.

Summarizing, the results presented in this work allow us
to understand the most fundamental behavior of the magne-
tism and electronic structure of graphene bilayer nanoribbons
with zigzag edge terminations. We suggest that in such sys-
tems, the magnetism for the � alignment can be controlled
by the application of either strain or pressure.
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